ML (MachineLearning)

tensorflow(ํ…์„œํ”Œ๋กœ์šฐ)์—์„œ def๋ฅผ ์ €์žฅํ•˜๊ณ  ๋ถˆ๋Ÿฌ์˜ค๋Š” ๋ฐฉ๋ฒ•

567Rabbit 2024. 4. 18. 17:44

 

python
๋‹ซ๊ธฐ
import numpy as np import tensorflow as tf from tensorflow.keras.datasets import fashion_mnist # ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()

 

 

 

sklearn๊ณผ ์ €์žฅ๋ฐฉ์‹์˜ ์ฐจ์ด์ 

 

sklearn => joblib   .pkl
tensorflow => save   .h5

 

 

 

 

 

def ์ƒ์„ฑํ•˜๊ธฐ

 

python
๋‹ซ๊ธฐ
def build_model(): โ€‹โ€‹model = Sequential() โ€‹โ€‹model.add( Flatten() ) โ€‹โ€‹model.add( Dense(128, 'relu') ) โ€‹โ€‹model.add( Dense(10, 'softmax')) โ€‹โ€‹model.compile('adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) โ€‹โ€‹return model

 

 

 

 

 

์ €์žฅํ•˜๊ธฐ


-๋ชจ๋ธ์„ ํด๋”๋กœ ์ €์žฅํ•˜๊ธฐ
model.save('my_model')


-๋ชจ๋ธ์„ ํŒŒ์ผ๋กœ ์ €์žฅํ•˜๊ธฐ
model.save('my_model.h5')

 

 

 

 

 

๋ถˆ๋Ÿฌ์˜ค๊ธฐ

 

-๋ชจ๋ธ์„ ํด๋”๋กœ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ

my_model = tf.keras.models.load_model('my_model')

 

-๋ชจ๋ธ์„ ํŒŒ์ผ๋กœ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ

my_model = tf.keras.models.load_model('my_model.h5')