python
๋ซ๊ธฐimport numpy as np
import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist
# ๋ฐ์ดํฐ ๋ถ๋ฌ์ค๊ธฐ
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
sklearn๊ณผ ์ ์ฅ๋ฐฉ์์ ์ฐจ์ด์
sklearn => joblib .pkl
tensorflow => save .h5
def ์์ฑํ๊ธฐ
python
๋ซ๊ธฐdef build_model():
โโmodel = Sequential()
โโmodel.add( Flatten() )
โโmodel.add( Dense(128, 'relu') )
โโmodel.add( Dense(10, 'softmax'))
โโmodel.compile('adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
โโreturn model
์ ์ฅํ๊ธฐ
-๋ชจ๋ธ์ ํด๋๋ก ์ ์ฅํ๊ธฐ
model.save('my_model')
-๋ชจ๋ธ์ ํ์ผ๋ก ์ ์ฅํ๊ธฐ
model.save('my_model.h5')
๋ถ๋ฌ์ค๊ธฐ
-๋ชจ๋ธ์ ํด๋๋ก ๋ถ๋ฌ์ค๊ธฐ
my_model = tf.keras.models.load_model('my_model')
-๋ชจ๋ธ์ ํ์ผ๋ก ๋ถ๋ฌ์ค๊ธฐ
my_model = tf.keras.models.load_model('my_model.h5')