๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ 218

๋žŒ๋‹ค(Lambda) : ์ต๋ช… ํ•จ์ˆ˜ ๊ฐœ๋… ์„ค๋ช…

Lambda ์ธ์ˆ˜๋ฅผ ์—ฌ๋Ÿฌ๊ฐœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ํ‘œํ˜„์‹์„ ํ•˜๋‚˜๋งŒ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ์ต๋ช… ํ•จ์ˆ˜ ๋žŒ๋‹คํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ด์œ ๋‹ค๋ฅธ ํ•จ์ˆ˜ ๋‚ด์—์„œ ์ต๋ช…ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ• ๋•Œ ๋” ์ž˜ ๋“œ๋Ÿฌ๋‚œ๋‹ค #1) q = lambda a: a + 10 print(q(5)) #=> 15  #2) ์ธ์ˆ˜ a,b๋ฅผ ์š”์•ฝํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋ฆฌํ„ด x = lambda m, n, b : m + n + b print(x(5,6,3))  #3) ๋™์ผํ•œ ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•˜์—ฌ ๋™์ผํ•œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์—์„œ ๋‘๊ธฐ๋Šฅ์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค ํ•จ์ˆ˜๋ฅผ ๋งŒ๋“ค๊ณ  ๋ณ€์ˆ˜ ๋‘๊ฐœ๋ฅผ ์„ค์ •ํ•˜์—ฌ ๊ฐ’์„ ๋ฆฌํ„ดdef cuc(n):     return lambda z : z * n mydoubler = cuc(2) mytripler = cuc(3)  print(mydoubler(11)) print(mytripler(11))

์ •๊ทœ์‹ ํ•จ์ˆ˜ (Python RegEx)

Python RegEx [์ •๊ทœ์‹] - ๊ฒ€์ƒ‰ ํŒจํ„ด์„ ํ˜•์„ฑํ•˜๋Š” ์ผ๋ จ์˜ ๋ฌธ์ž - ๋ฌธ์ž์—ด์— ์ง€์ •๋œ ๊ฒ€์ƒ‰ ํŒจํ„ด์ด ํฌํ•จ๋˜์–ด ์žˆ๋Š”์ง€๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค - ๋‚ด์žฅํŒจํ‚ค์ง€์ด๋ฉฐ ์•„๋ž˜์™€ ๊ฐ™์ด ์‚ฌ์šฉํ•œ๋‹ค  import re #๋ฌธ์ž์—ด์„ ๊ฒ€์ƒ‰ํ•˜์—ฌ The๋กœ ์‹œ์ž‘ํ•˜๊ณ  Spain์œผ๋กœ ๋๋‚˜๋Š”์ง€ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค  txt = "The rain in Spain" x = re.search("^The.*Spain$",txt) if x:     print("Yes! match!") else:     print("No match")   ์ •๊ทœ์‹ ํ•จ์ˆ˜1) findall : ๋ชจ๋“  ์ผ์น˜ ํ•ญ๋ชฉ์ด ํฌํ•จ๋œ ๋ชฉ๋ก์„ ๋ฆฌํ„ด 2) search : ๋ฌธ์ž์—ด์—์„œ ์ผ์น˜ํ•˜๋Š” ํ•ญ๋ชฉ์„ ๊ฒ€์ƒ‰ํ•˜๊ณ  ์ผ์น˜ํ•˜๋Š” ํ•ญ๋ชฉ์ด ์žˆ์œผ๋ฉด Match๊ฐ์ฒด๋ฅผ ๋ฆฌํ„ด 3) split : ์ผ์น˜ํ• ๋•Œ ๋งˆ๋‹ค ๋ฌธ์ž์—ด์ด ๋ถ„ํ• ๋œ..

ํŒŒ์ด์ฌ Datetime ํฌ๋งท ๊ฐ€์ด๋“œ: strftime ์ฝ”๋“œ ์˜ˆ์‹œ์™€ ์„ค๋ช…

from datetime import datetime %a : ํ‰์ผ ์งง์€ ๋ฒ„์ „ ex)mon %A : ํ‰์ผ full ๋ฒˆ์ „ ex)monday %w : ์ฃผ ๋„˜๋ฒ„ 0-6 0 is sunday %d : day of month 01-31 %b : ๋‹ฌ ์ด๋ฆ„ ์ˆ ๋ฒ„์ „ %B : ๋‹ฌ ์ด๋ฆ„ ํ’€ ๋ฒ„์ „ %m : 1๋…„ 12๋‹ฌ 01-12 %y : ๋…„๋„ ์ˆ๋ฒ„์ „ (์„ธ๊ธฐ๋ฅผ ๋บธ) ex)23 %Y : ๋…„๋„ ํ’€๋ฒ„์ „ %H : Hour ์‹œ๊ฐ„ 00-23 %I : Hour ์‹œ๊ฐ„ 00-12 %p : ์˜ค์ „์ด๋ƒ ์˜คํ›„๋ƒ AM/PM %M : Minute 00-59 ๋ถ„ %s : Second 00-59 ์ดˆ %f : ๋งˆ์ดํฌ๋กœ์ดˆ 000000-999999 %z : utc offset => ์„ธ๊ณ„ํ˜‘์ •์‹œ ๊ฐ„๊ฒฉ %Z : Timezone %j : ๋…„ 365 %U : ์ผ์š”์ผ์ด..

Github(๊นƒํ—ˆ๋ธŒ) ์šฉ์–ด ์ •๋ฆฌ

local repository : ๋‚ด pc์—์„œ ๊ด€๋ฆฌํ•˜๋Š” ๊นƒ(git)์ €์žฅ์†Œ  remote repository : local์ €์žฅ์†Œ๋ฅผ ์—…๋กœ๋“œํ•˜๋Š”๊ณณ ex) ๊นƒํ—ˆ๋ธŒ(github)  clone ํด๋ก  : ๋ช…๋ น์–ด๋กœ ๊ธฐ์กด ์›๊ฒฉ ์ €์žฅ์†Œ๋ฅผ ๋กœ์ปฌ์— ๋ฐ›์„์ˆ˜ ์žˆ์Œ  working directory : ์ž‘์—…์ด ์ผ์–ด๋‚˜๋Š” ํด๋”  staging area : ์ž‘์—…ํด๋”์—์„œ ๋ณ€๊ฒฝ ๋‚ด์šฉ์„ ๊ธฐ๋กํ•˜๋Š”๊ณณ  (git์ €์žฅ์†Œ์—์„œ commitํ•˜๊ธฐ ์ „์— ์˜ฌ๋ ค๋‘๋Š” ๊ณต๊ฐ„)  #status ์ปค๋ฐ‹๋œ ํŒŒ์ผ & ์Šคํ…Œ์ด์ง€์— ์žˆ๋Š” ํŒŒ์ผ : tracked ๊ทธ ์™ธ untracked  $ git status  #add ์ž‘์—…ํด๋”์—์„œ ์ž‘์—…ํ•œ ๋ณ€๊ฒฝ์„ ์Šคํ…Œ์ด์ง€์— ์˜ฌ๋ฆด๋•Œ(์ปค๋ฐ‹ํ•˜๊ธฐ ์ง์ „์—) ์‚ฌ์šฉํ•˜๋Š” ๋ช…๋ น์–ด addํ•œ ํŒŒ์ผ์ด tracked ์ƒํƒœ๊ฐ€ ๋จ(git ๊ด€๋ฆฌํ•˜๋Š” ๋Œ€์ƒ์ด ๋จ)  #comm..

DevOps/Github 2024.04.24

ํ”„๋กœํŽซ(Prophet) ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์‚ฌ์šฉํ•˜๊ธฐ

install : pip install prophet์œ„ ์—๋Ÿฌ ๋ฐœ์ƒ์‹œ : conda install -c conda-forge prophet  ์ž„ํฌํŠธํ•˜๊ธฐ import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport randomimport seaborn as snsfrom prophet import Prophet    ์•„๋ณด์นด๋„ ๋ฐ์ดํ„ฐ   ํ”„๋กœํŽซ ๋ถ„์„์„ ์œ„ํ•ด, ๋‘๊ฐœ์˜ ์ปฌ๋Ÿผ๋งŒ ๊ฐ€์ ธ์˜ค๊ธฐ ('Date', 'AveragePrice') avocado_prophet_df = df[['Date','AveragePrice']]  avocado_prophet_df DateAveragePrice02015-01-041.3312015-01-041.3522015..

๋ฐ์ดํ„ฐ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ์ด๋ฏธ์ง€๋ฅผ ์ฆ๊ฐ•ํ•˜๊ณ  Transfer Learningํ•˜๊ธฐ

BASE MODEL HEAD MODEL - ํŠธ๋žœ์Šคํผ ๋Ÿฌ๋‹์€, ํ•™์Šต์ด ์ž˜ ๋œ ๋ชจ๋ธ์„ ๊ฐ€์ ธ์™€์„œ ์šฐ๋ฆฌ์˜ ๋ฌธ์ œ์— ๋งž๊ฒŒ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด๋ฏ€๋กœ ํ•™์Šต์ด ์ž˜ ๋œ ๋ชจ๋ธ์˜ base model๋งŒ ๊ฐ€์ ธ์˜จ๋‹ค ์ฆ‰, head๋ชจ๋ธ์€ ๋นผ๊ณ  ๊ฐ€์ ธ์™€์„œ ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ head๋ชจ๋ธ์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ํŠธ๋žœ์Šคํผ ๋Ÿฌ๋‹์˜ ๊ณผ์ •์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค ์„ค์น˜ํ•˜๊ธฐ !pip install tensorflow-gpu==2.0.0.alpha0 !pip install tqdm Dogs vs Cats dataset ๋‹ค์šด๋กœ๋“œ๋ฐ›๊ธฐ !wget --no-check-certificate \ https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip \ -O ./cats_and_dogs_filtered.zip ์ž„..

๋”ฅ๋Ÿฌ๋‹ : CNN(ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง, Convolutional Neural Network), ์ปฌ๋Ÿฌ์‚ฌ์ง„ ์‹๋ณ„ํ•˜๊ธฐ

CNN์€ ์ปจ๋ณผ๋ฃจ์…˜ ๊ณ„์ธต(convolutional layer)๊ณผ ํ’€๋ง ๊ณ„์ธต(pooling layer)์œผ๋กœ ๊ตฌ์„ฑ๋œ ์‹ ๊ฒฝ๋ง์ด๋‹ค. 1. ์ปจ๋ณผ๋ฃจ์…˜ ๊ณ„์ธต์€ ์ž…๋ ฅ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ํ•„ํ„ฐ(๋˜๋Š” ์ปค๋„)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณ„์ธต์ด๋‹ค. ์ด ํ•„ํ„ฐ๋Š” ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ํŠน์ • ํŒจํ„ด์„ ๊ฐ์ง€ํ•˜๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ฐ€์žฅ์ž๋ฆฌ, ์งˆ๊ฐ, ์ƒ‰์ƒ ๋“ฑ์„ ๊ฐ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. 2. ํ’€๋ง ๊ณ„์ธต์€ ์ถœ๋ ฅ์˜ ๊ณต๊ฐ„ ํฌ๊ธฐ๋ฅผ ์ค„์ด๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ตœ๋Œ€ ํ’€๋ง(max pooling)์ด๋‚˜ ํ‰๊ท  ํ’€๋ง(average pooling)์„ ์‚ฌ์šฉํ•˜์—ฌ ์ถœ๋ ฅ์„ ๊ฐ ์˜์—ญ์—์„œ ๊ฐ€์žฅ ํฐ ๊ฐ’ ๋˜๋Š” ํ‰๊ท  ๊ฐ’์œผ๋กœ ๋Œ€์ฒดํ•œ๋‹ค. ์ด๋Š” ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๊ณ , ๊ณ„์‚ฐ๋Ÿ‰์„ ์ค„์ด๋ฉฐ, ๋ถˆํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ฑฐํ•˜์—ฌ ํŠน์ง•์„ ๋ณด๋‹ค ๊ฐ•์กฐํ•œ๋‹ค. CNN์€ ์ด๋Ÿฌํ•œ ์ปจ๋ณผ๋ฃจ์…˜ ๊ณ„์ธต๊ณผ ํ’€๋ง ๊ณ„์ธต์„ ..

tensorflow(ํ…์„œํ”Œ๋กœ์šฐ)์—์„œ def๋ฅผ ์ €์žฅํ•˜๊ณ  ๋ถˆ๋Ÿฌ์˜ค๋Š” ๋ฐฉ๋ฒ•

import numpy as npimport tensorflow as tffrom tensorflow.keras.datasets import fashion_mnist# ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()   sklearn๊ณผ ์ €์žฅ๋ฐฉ์‹์˜ ์ฐจ์ด์  sklearn => joblib   .pkltensorflow => save   .h5     def ์ƒ์„ฑํ•˜๊ธฐ def build_model(): model = Sequential() model.add( Flatten() ) model.add( Dense(128, 'relu') ) model.add( Dense(10, 'softmax')) model.compile('..

ํ‘๋ฐฑ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์…‹์„ AI์—๊ฒŒ ํŒ๋ณ„์‹œ์ผœ, ์นดํ…Œ๊ณ ๋ฆฌ์˜ ์ •๋‹ต์„ ๋งž์ถ”๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•

https://www.tensorflow.org/datasets/catalog/fashion_mnist?hl=ko ํŒจ์…˜_์— ๋‹ˆ์ŠคํŠธ | TensorFlow Datasets ์ด ํŽ˜์ด์ง€๋Š” Cloud Translation API๋ฅผ ํ†ตํ•ด ๋ฒˆ์—ญ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํŒจ์…˜_์— ๋‹ˆ์ŠคํŠธ ์ปฌ๋ ‰์…˜์„ ์‚ฌ์šฉํ•ด ์ •๋ฆฌํ•˜๊ธฐ ๋‚ด ํ™˜๊ฒฝ์„ค์ •์„ ๊ธฐ์ค€์œผ๋กœ ์ฝ˜ํ…์ธ ๋ฅผ ์ €์žฅํ•˜๊ณ  ๋ถ„๋ฅ˜ํ•˜์„ธ์š”. Fashion-MNIST๋Š” 60,000๊ฐœ์˜ ์˜ˆ์ œ๋กœ ๊ตฌ์„ฑ๋œ www.tensorflow.org import numpy as np import tensorflow as tf from tensorflow.keras.datasets import fashion_mnist #fashion_mnist ์‚ฌ์šฉ (X_train, y_train), (X_test, y_test) = fashion..

GridSearch ๋ฅผ ์ด์šฉํ•œ ์ตœ์ ์˜ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ ์ฐพ๊ธฐ

https://www.tensorflow.org/api_docs/python/tf/keras?_gl=1*7074vd*_up*MQ..*_ga*MjEzMDk5NTY2NC4xNzEzNDg3ODQ0*_ga_W0YLR4190T*MTcxMzQ4Nzg0NC4xLjAuMTcxMzQ4Nzg0NC4wLjAuMA.. Module: tf.keras | TensorFlow v2.16.1 DO NOT EDIT. www.tensorflow.org ! pip install scikeras from scikeras.wrappers import KerasClassifier from sklearn.model_selection import GridSearchCV from keras.models import Sequential from ke..