๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ 215

SciPy(Scientific Python) Numpy๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๊ณผํ•™ ๊ณ„์‚ฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ

SciPy[Scientific Python] : Numpy๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๊ณผํ•™๊ณ„์‚ฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ด๋‹ค.: ์ฃผ๋กœ ํŒŒ์ด์ฌ์œผ๋กœ ์ž‘์„ฑ๋˜์—ˆ์ง€๋งŒ ์ผ๋ถ€ ์„ธ๊ทธ๋จผํŠธ๋Š” c๋กœ ์ž‘์„ฑ๋˜์—ˆ๋‹ค   SciPy์„ค์น˜ํ•˜๊ธฐ     ! pip install scipy    Unit Categories print(dir(constants))  #dir์„ ์‚ฌ์šฉํ•˜๋ฉด ๋ชจ๋“  ๋‹จ์œ„ ๋ชฉ๋ก์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค  - scipy๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‹จ์œ„์— ๋Œ€ํ•œ ๋ณ€ํ™˜์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฏธํ„ฐ๋ฒ• [Metric]: Scipy ๋ฐ Numpy์—์„œ๋Š” ๊ฑฐ๋ฆฌ ๋ฐ ๊ธธ์ด๋ฅผ ์ธก์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” SI ๋‹จ์œ„์ธ ๋ฏธํ„ฐ(m)๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋ฐ”์ด๋„ˆ๋ฆฌ [Binary]: ๋ฐ”์ด๋„ˆ๋ฆฌ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ๋Œ€ํ•œ ๊ธฐ๋Šฅ์€ Numpy์—์„œ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ปดํ“จํ„ฐ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค๊ฐ๋„ [Angle]: Nump..

ํ•˜์ด๋ผํ‚ค ํด๋Ÿฌ์Šคํ„ฐ๋ง(Hierarchical Clustering) : ๊ณ„์ธต์  ๊ตฐ์ง‘

๋จธ์‹ ๋Ÿฌ๋‹์˜ ๋น„์ง€๋„(unsupervised)ํ•™์Šต 1. ํ‰ํ• /๋ถ„ํ•  ๊ธฐ๋ฐ˜์˜ ๊ตฐ์ง‘ (Partition-based Clustering)- ๋น„์Šทํ•œ ํŠน์ง•์„ ๊ฐ–๋Š” ๋ฐ์ดํ„ฐ๋ผ๋ฆฌ ๋ฌถ๋Š”๊ฒƒ์ด๋‹ค- ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๋ฏธ๋ฆฌ ์ •์˜๋œ ์ˆ˜์˜ ๊ตฐ์ง‘์„ ํ˜•์„ฑํ•˜๋ฉฐ, ๋ฐ์ดํ„ฐ๋ฅผ ํ•ด๋‹น ๊ตฐ์ง‘์— ํ• ๋‹นํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•œ๋‹คex ) K-Means Clustering   2. ๊ณ„์ธต์  ๊ตฐ์ง‘ (Hierarchical Clustering)- ๋ฐ์ดํ„ฐ๋ฅผ ์ˆœ์ฐจ์  ๋˜๋Š” ๊ณ„์ธต์ ์œผ๋กœ ๊ทธ๋ฃนํ™”ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜- ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ ๋˜๋Š” ์œ ์‚ฌ๋„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ„์ธต ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ๊ตฐ์ง‘์„ ํ˜•์„ฑ- ๊ณ„์ธต์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ๊ตฐ์ง‘ํ™” ๊ฒฐ๊ณผ๋ฅผ ๋‹ค์–‘ํ•œ ์ˆ˜์ค€์—์„œ ์‚ดํŽด๋ณผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๊ธฐ ์‰ฝ๋‹ค- ์‚ฌ์ „์— ๊ตฐ์ง‘์˜ ๊ฐœ์ˆ˜๋ฅผ ์ง€์ •ํ•  ํ•„์š”๊ฐ€ ์—†์–ด ํŽธ๋ฆฌ- ํฐ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด์„œ๋Š” ๊ณ„์‚ฐ ๋น„์šฉ..

K-Means ์•Œ๊ณ ๋ฆฌ์ฆ˜

๋จธ์‹ ๋Ÿฌ๋‹์˜ ๋น„์ง€๋„(unsupervised)ํ•™์Šต 1. ํ‰ํ• /๋ถ„ํ•  ๊ธฐ๋ฐ˜์˜ ๊ตฐ์ง‘ (Partition-based Clustering) - ๋น„์Šทํ•œ ํŠน์ง•์„ ๊ฐ–๋Š” ๋ฐ์ดํ„ฐ๋ผ๋ฆฌ ๋ฌถ๋Š”๊ฒƒ์ด๋‹ค - ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๋ฏธ๋ฆฌ ์ •์˜๋œ ์ˆ˜์˜ ๊ตฐ์ง‘์„ ํ˜•์„ฑํ•˜๋ฉฐ, ๋ฐ์ดํ„ฐ๋ฅผ ํ•ด๋‹น ๊ตฐ์ง‘์— ํ• ๋‹นํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•œ๋‹ค ex ) K-Means Clustering 2. ๊ณ„์ธต์  ๊ตฐ์ง‘ (Hierarchical Clustering) - ๋ฐ์ดํ„ฐ๋ฅผ ์ˆœ์ฐจ์  ๋˜๋Š” ๊ณ„์ธต์ ์œผ๋กœ ๊ทธ๋ฃนํ™”ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ - ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ ๋˜๋Š” ์œ ์‚ฌ๋„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ„์ธต ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ๊ตฐ์ง‘์„ ํ˜•์„ฑ - ๊ณ„์ธต์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ๊ตฐ์ง‘ํ™” ๊ฒฐ๊ณผ๋ฅผ ๋‹ค์–‘ํ•œ ์ˆ˜์ค€์—์„œ ์‚ดํŽด๋ณผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๊ธฐ ์‰ฝ๋‹ค - ์‚ฌ์ „์— ๊ตฐ์ง‘์˜ ๊ฐœ์ˆ˜๋ฅผ ์ง€์ •ํ•  ํ•„์š”๊ฐ€ ์—†์–ด ํŽธ๋ฆฌ - ํฐ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด์„œ๋Š”..

Matplotlib) Histograms(ํžˆ์Šคํ† ๊ทธ๋žจ) ์ฐจํŠธ ๊ทธ๋ฆฌ๊ธฐ

- ์ฃผ์–ด์ง„ ๊ฐ ๊ตฌ๊ฐ„ ๋‚ด์— ์œ„์น˜ํ•˜๋Š” ๊ด€์ธก์น˜ ์ˆ˜๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ทธ๋ž˜ํ”„์ด๋‹ค - ๋นˆ๋„ ๋ถ„ํฌ๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ทธ๋ž˜ํ”„์ด๋‹ค- ์ผ์ •ํ•œ ํ•ด๋‹น ๊ตฌ๊ฐ„์— ํฌํ•จ๋˜๋Š” ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๋ฅผ ์•Œ ์ˆ˜ ์žˆ๋‹ค- ์ผ์ • ๊ตฌ๊ฐ„์„ bin์ด๋ผ๊ณ  ํ•˜๋ฉฐ ๊ตฌ๊ฐ„์ด ์—ฌ๋Ÿฌ๊ฐœ๋ฉด ๋ณต์ˆ˜ํ˜•์œผ๋กœ bins๋ผ๊ณ  ํ•œ๋‹ค- ํžˆ์Šคํ† ๊ทธ๋žจ์€ ๋˜‘๊ฐ™์€ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง€๊ณ  bin์„ ์–ด๋–ป๊ฒŒ ์„ค์ •ํ•˜๋А๋ƒ์— ๋”ฐ๋ผ์„œ ์ฐจํŠธ๋ชจ์–‘์ด ๋‹ฌ๋ผ์ง€๋ฉฐ ํ•ด์„์ด ๋‹ฌ๋ผ์ง„๋‹ค   df  id species hp attack defense speed01bulbasaur4549494512ivysaur6062636023venusaur8082838034charmander3952436545charmeleon58645880.....................802803poipole67736773803804naganadel737373121..

Python/Matplotlib 2024.04.15

Matplotlib) Pie (ํŒŒ์ด) ์ฐจํŠธ ๊ทธ๋ฆฌ๊ธฐ

๋ฐ์ดํ„ฐ๋ฅผ ํผ์„ผํ…Œ์ด์ง€๋กœ ๋น„๊ตํ•ด์„œ ๋ณด๊ณ ์‹ถ์„๋•Œ Pie chart(ํŒŒ์ด ์ฐจํŠธ)๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค  ํฌ์ผ“๋ชฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ Pie chart๋ฅผ ๊ทธ๋ ค๋ณด์ž  df idspeciesgeneration_idheightweightbase_experiencetype_1type_201bulbasaur10.76.964grasspoison12ivysaur11.013.0142grasspoison23venusaur12.0100.0236grasspoison34charmander10.68.562fireNaN45charmeleon11.119.0142fireNaN...........................802803poipole70.61.8189poisonNaN803804naganadel73.6150.0243poisondragon80480..

Python/Matplotlib 2024.04.15

DTree(Decision Tree) ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์นดํ…Œ๊ณ ๋ฆฌ ๋ถ„๋ฅ˜ํ•˜๊ธฐ

๋จธ์‹ ๋Ÿฌ๋‹์˜ ์ง€๋„ํ•™์Šต์— ์†ํ•˜๋Š” Classfication(๋ถ„๋ฅ˜) - Logistic Regression (๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€) - KNN(K nearest neighbor) ์•Œ๊ณ ๋ฆฌ์ฆ˜, - SVC(Support Vector Machine) ์•Œ๊ณ ๋ฆฌ์ฆ˜, - DT(Decision Tree) ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋„ค ๊ฐ€์ง€ ๋ฐฉ๋ฒ• ์ค‘์— ์ •ํ™•๋„๊ฐ€ ๋” ๋†’์€ ๋ฐฉ๋ฒ•์œผ๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ ํƒํ•˜์—ฌ ์‚ฌ์šฉํ•œ๋‹ค import numpy as np import matplotlib.pyplot as plt import pandas as pd DT(Decision Tree) ์˜์‚ฌ๊ฒฐ์ • ๋‚˜๋ฌด๋Š” ํ๋ฆ„๋„์ด๋ฉฐ ์ด์ „ ๊ฒฝํ—˜์„ ๋ฐ”ํƒ•์œผ๋กœ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๋ฐ ๋„์›€์„ ์ฃผ๋Š” ๊ฒƒ์ด๋‹ค. df User ID Gender Age EstimatedSalary Purchased 0 1562451..

SVM(Support Vector Machine) ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์นดํ…Œ๊ณ ๋ฆฌ ๋ถ„๋ฅ˜ํ•˜๊ธฐ

๋จธ์‹ ๋Ÿฌ๋‹์˜ ์ง€๋„ํ•™์Šต์— ์†ํ•˜๋Š” Classfication(๋ถ„๋ฅ˜) - Logistic Regression (๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€) - KNN(K nearest neighbor) ์•Œ๊ณ ๋ฆฌ์ฆ˜, - SVC(Support Vector Machine) ์•Œ๊ณ ๋ฆฌ์ฆ˜, - DT(Decision Tree) ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋„ค ๊ฐ€์ง€ ๋ฐฉ๋ฒ• ์ค‘์— ์ •ํ™•๋„๊ฐ€ ๋” ๋†’์€ ๋ฐฉ๋ฒ•์œผ๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ ํƒํ•˜์—ฌ ์‚ฌ์šฉํ•œ๋‹ค SVM(Support Vector Machine) SVC (Support Vector Classifier): SVC๋Š” ๋ถ„๋ฅ˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ SVM์˜ ๋ณ€ํ˜•์ด๋‹ค ์ด๊ฒƒ์€ ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๊ธฐ ์œ„ํ•ด ์ตœ์ ์˜ ๋ถ„๋ฆฌ ์ดˆํ‰๋ฉด์„ ์ฐพ๋Š”๋‹ค SVC๋Š” ํด๋ž˜์Šค ๊ฐ„์˜ ๊ฒฝ๊ณ„๋ฅผ ๋ถ„๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ์ตœ์ ์˜ ์ดˆํ‰๋ฉด์„ ์ฐพ๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ SVR (Support Vector Regress..

KNN(K nearest neighbor) ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์นดํ…Œ๊ณ ๋ฆฌ ๋ถ„๋ฅ˜ํ•˜๊ธฐ

๋จธ์‹ ๋Ÿฌ๋‹์˜ ์ง€๋„ํ•™์Šต์— ์†ํ•˜๋Š” Classfication(๋ถ„๋ฅ˜) - Logistic Regression (๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€) - KNN(K nearest neighbor) ์•Œ๊ณ ๋ฆฌ์ฆ˜, - SVC(Support Vector Machine) ์•Œ๊ณ ๋ฆฌ์ฆ˜, - DT(Decision Tree) ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋„ค ๊ฐ€์ง€ ๋ฐฉ๋ฒ• ์ค‘์— ์ •ํ™•๋„๊ฐ€ ๋” ๋†’์€ ๋ฐฉ๋ฒ•์œผ๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ ํƒํ•˜์—ฌ ์‚ฌ์šฉํ•œ๋‹ค import numpy as np import matplotlib.pyplot as plt import pandas as pd df User ID Gender Age EstimatedSalary Purchased 0 15624510 Male 19 19000 0 1 15810944 Male 35 20000 0 2 15668575 Female 26 430..

๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•์ด ๋ฐœ์ƒํ•  ๋•Œ, ๋ฐ์ดํ„ฐ ๋ฆฌ์ƒ˜ํ”Œ๋งํ•˜๊ธฐ

import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sb #๋‹น๋‡จ๋ณ‘์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ชจ๋ธ df Preg Plas Pres skin test mass pedi age class 0 6 148 72 35 0 33.6 0.627 50 1 1 1 85 66 29 0 26.6 0.351 31 0 2 8 183 64 0 0 23.3 0.672 32 1 3 1 89 66 23 94 28.1 0.167 21 0 4 0 137 40 35 168 43.1 2.288 33 1 ... ... ... ... ... ... ... ... ... ... 763 10 101 76 48 180 32.9 0.171 63 0 764 2 1..

Matplotlib) Bar chart : countplot ์ฐจํŠธ ๊ทธ๋ฆฌ๊ธฐ

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sb  ํฌ์ผ“๋ชฌ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๋‹ค. idspeciesgeneration_idheightweightbase_experiencetype_1type_201bulbasaur10.76.964grasspoison12ivysaur11.013.0142grasspoison23venusaur12.0100.0236grasspoison34charmander10.68.562fireNaN45charmeleon11.119.0142fireNaN...........................802803poipole70.61.8189poisonNaN803804naganadel73.6150...

Python/Matplotlib 2024.04.15